organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-{4-[(4-Methoxybenzylidene)amino]-3phenyl-5-sulfanylidene-4,5-dihydro-1*H*-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1one

Wei Wang,^{a,b}* Qing-lei Liu,^a Yan Gao,^b Xiao-yu Jia^b and Jing-jing Zhang^b

^aSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China, and ^bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China

Correspondence e-mail: zhao_submit@yahoo.com.cn

Received 7 August 2011; accepted 25 August 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.005 Å; R factor = 0.067; wR factor = 0.157; data-to-parameter ratio = 13.4.

In the title molecule, $C_{31}H_{26}N_4O_2S$, the phenyl ring attached to the 1,2,4-triazole ring forms dihedral angles of 65.4 (2), 63.4 (2) and 62.2 (2)° with the other three rings. The 1,2,4triazole ring makes dihedral angles of 78.0 (2), 87.9 (2), 24.9 (2) and 62.8 (2)° with three phenyl rings and the methoxyphenyl ring.

Related literature

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivatives, see: Al-Tamimi *et al.* (2010); Fun *et al.* (2009); Gao *et al.* (2011); Tan *et al.* (2010); Wang *et al.* (2011); Zhao *et al.* (2010).

Experimental

Crystal data

Data collection

Rigaku Saturn CCD area-detector diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\rm min} = 0.969, T_{\rm max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ 344 parameters $wR(F^2) = 0.157$ H-atom parameters constrainedS = 1.16 $\Delta \rho_{max} = 0.29$ e Å $^{-3}$ 4616 reflections $\Delta \rho_{min} = -0.26$ e Å $^{-3}$

16481 measured reflections

 $R_{\rm int} = 0.053$

4616 independent reflections

3734 reflections with $I > 2\sigma(I)$

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the project supported by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2374).

References

- Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, 01756.
- Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, 0495–0496.
- Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, 01794.
- Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, 02224.
- Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, 0269. Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, 02814.

Acta Cryst. (2011). E67, o2534 [doi:10.1107/S160053681103488X]

3-{4-[(4-Methoxybenzylidene)amino]-3-phenyl-5-sulfanylidene-4,5-dihydro-1*H*-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1-one

W. Wang, Q. Liu, Y. Gao, X. Jia and J. Zhang

Comment

In continuation of structural study of Mannich bases derivatives synthesized by reactions of the amino heterocycles and aromatic aldehydes in our group (Wang *et al.*, 2011), we present here the crystal structure of the title compound (Fig. 1).

The bond lengths and angles in the molecule are found to have normal values comparable with those reported in the related 1,2,4-triazole-5(4*H*)-thione derivatives (Al-Tamimi *et al.*, 2010; Fun *et al.*, 2009; Tan *et al.*, 2010; Wang *et al.*, 2011). The C16 and C17 atoms in the 1,2,4-triazole ring show distorted Csp^2 hybridization states with the bond angles of 101.8 (3)° (N1—C16—N3), 129.5 (2)° (N3—C16—S1), 110.0 (3)° (N2—C17—N3) and 127.3 (3) ° (N2—C17—C18), which are similar to angles reported for other triazole derivatives (Zhao *et al.*, 2010; Gao *et al.*, 2011). There are four phenyl or benzene rings in this structure. Phenyl ring attached to the 1,2,4-triazole ring forms the dihedral angles of 65.4 (2), 63.4 (2) and 62.2 (2)° with other three rings.

Experimental

The title compound was synthesized by the reaction of 4-methoxybenzaldehyde (2.0 mmol) and 3-(4-amino-3-phenyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-1,3-diphenylpropan-1-one (2.0 mmol) in refluxing ethanol. The reaction progress was monitored *via* TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as colorless solid in 81% yield. Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement

H atoms were positioned geometrically and refined as riding (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(parent)$ or $1.5U_{eq}(parent)$.

Figures

Fig. 1. View of the title molecule showing displacement ellipsoids at the 60% probability level.

3-{4-[(4-Methoxybenzylidene)amino]-3-phenyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-yl}-1,3-diphenylpropan-1-one

F(000) = 1088

 $\theta = 1.5 - 28.0^{\circ}$

 $\mu = 0.16 \text{ mm}^{-1}$

Prism, colourless $0.20\times0.12\times0.10~mm$

T = 113 K

 $D_{\rm x} = 1.306 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6676 reflections

Crystal data

C31H26N4O2S $M_r = 518.62$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.0131 (12) Å b = 13.940(2) Å c = 31.490 (4) Å $\beta = 92.007 \ (6)^{\circ}$ V = 2638.1 (8) Å³ Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer	4616 independent reflections
Radiation source: rotating anode	3734 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.053$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
ϕ and ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2005)	$k = -16 \rightarrow 15$
$T_{\min} = 0.969, \ T_{\max} = 0.984$	<i>l</i> = −37→37
16481 measured reflections	

Refinement

Refinement on F^2

 $wR(F^2) = 0.157$

4616 reflections

344 parameters

0 restraints 0 constraints

S = 1.16

 $R[F^2 > 2\sigma(F^2)] = 0.067$

Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 1.9562P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta \rho_{\text{max}} = 0.29 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.23615 (15)	0.69419 (6)	0.33669 (3)	0.0366 (3)
01	0.3196 (5)	0.7950 (2)	0.48255 (9)	0.0547 (8)
02	0.1052 (4)	0.15537 (16)	0.24902 (7)	0.0337 (6)
N1	0.5402 (4)	0.73453 (18)	0.40025 (8)	0.0282 (6)
N2	0.7135 (4)	0.69513 (18)	0.42388 (8)	0.0271 (6)
N3	0.5571 (4)	0.58826 (17)	0.38083 (8)	0.0245 (6)
N4	0.5420 (4)	0.50339 (17)	0.35608 (8)	0.0253 (6)
C1	0.5395 (7)	0.8105 (3)	0.56280 (13)	0.0468 (10)
H1	0.3998	0.7786	0.5615	0.056*
C2	0.6540 (8)	0.8187 (3)	0.60105 (12)	0.0523 (11)
H2	0.5935	0.7920	0.6259	0.063*
C3	0.8573 (8)	0.8656 (3)	0.60374 (13)	0.0512 (11)
Н3	0.9359	0.8710	0.6303	0.061*
C4	0.9454 (7)	0.9043 (3)	0.56763 (12)	0.0482 (10)
H4	1.0840	0.9371	0.5694	0.058*
C5	0.8309 (7)	0.8954 (3)	0.52858 (12)	0.0433 (9)
Н5	0.8935	0.9215	0.5038	0.052*
C6	0.6266 (6)	0.8490 (2)	0.52528 (11)	0.0380 (9)
C7	0.4977 (6)	0.8366 (2)	0.48405 (12)	0.0375 (9)
C8	0.5941 (6)	0.8789 (2)	0.44398 (11)	0.0365 (8)
H8A	0.7566	0.8671	0.4447	0.044*
H8B	0.5713	0.9492	0.4442	0.044*
С9	0.4928 (6)	0.8383 (2)	0.40247 (11)	0.0324 (8)
Н9	0.3278	0.8475	0.4024	0.039*
C10	0.5829 (6)	0.8909 (2)	0.36457 (11)	0.0330 (8)
C11	0.7910 (6)	0.8697 (3)	0.34881 (11)	0.0387 (9)
H11	0.8776	0.8190	0.3610	0.046*
C12	0.8718 (7)	0.9226 (3)	0.31521 (12)	0.0473 (10)
H12	1.0120	0.9067	0.3041	0.057*
C13	0.7509 (8)	0.9976 (3)	0.29786 (12)	0.0510(11)
H13	0.8080	1.0343	0.2753	0.061*
C14	0.5448 (9)	1.0187 (3)	0.31375 (14)	0.0624 (13)
H14	0.4607	1.0707	0.3022	0.075*
C15	0.4606 (7)	0.9650 (3)	0.34621 (13)	0.0466 (10)
H15	0.3167	0.9790	0.3561	0.056*
C16	0.4396 (5)	0.6727 (2)	0.37249 (10)	0.0284 (7)
C17	0.7243 (5)	0.6060 (2)	0.41084 (9)	0.0244 (7)
C18	0.8904 (5)	0.5381 (2)	0.42774 (9)	0.0225 (7)
C19	0.8585 (5)	0.4386 (2)	0.42829 (9)	0.0272 (7)
H19	0.7240	0.4117	0.4169	0.033*
C20	1.0228 (6)	0.3795 (2)	0.44547 (10)	0.0306 (8)
H20	1.0005	0.3121	0.4458	0.037*
C21	1.2204 (6)	0.4177 (2)	0.46231 (10)	0.0312 (7)
H21	1.3333	0.3765	0.4737	0.037*
C22	1 2516 (6)	0.5166 (2)	0 46237 (10)	0.0298(7)
		0.0100 (2)	0.10207 (10)	0.0200(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H22	1.3856	0.5430	0.4742	0.036*
C23	1.0891 (5)	0.5767 (2)	0.44532 (9)	0.0261 (7)
H23	1.1116	0.6441	0.4455	0.031*
C24	0.3397 (5)	0.4742 (2)	0.34988 (9)	0.0259 (7)
H24	0.2228	0.5062	0.3637	0.031*
C25	0.2871 (5)	0.3929 (2)	0.32204 (9)	0.0250 (7)
C26	0.0753 (5)	0.3513 (2)	0.32370 (10)	0.0284 (7)
H26	-0.0311	0.3776	0.3420	0.034*
C27	0.0199 (5)	0.2725 (2)	0.29886 (10)	0.0290 (7)
H27	-0.1234	0.2443	0.3003	0.035*
C28	0.1763 (5)	0.2344 (2)	0.27151 (9)	0.0261 (7)
C29	0.3856 (5)	0.2765 (2)	0.26850 (9)	0.0281 (7)
H29	0.4902	0.2516	0.2495	0.034*
C30	0.4381 (5)	0.3550 (2)	0.29371 (9)	0.0256 (7)
H30	0.5804	0.3839	0.2917	0.031*
C31	0.2434 (6)	0.1194 (3)	0.21661 (10)	0.0376 (8)
H31A	0.2660	0.1697	0.1954	0.056*
H31B	0.1713	0.0639	0.2029	0.056*
H31C	0.3875	0.1000	0.2293	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0310 (5)	0.0299 (5)	0.0482 (5)	0.0041 (4)	-0.0067 (4)	-0.0010 (4)
01	0.0489 (17)	0.0576 (18)	0.0587 (17)	-0.0203 (15)	0.0179 (14)	-0.0148 (14)
02	0.0352 (13)	0.0321 (12)	0.0341 (12)	-0.0010 (10)	0.0021 (11)	-0.0119 (10)
N1	0.0257 (15)	0.0209 (13)	0.0379 (15)	0.0004 (11)	0.0020 (12)	-0.0048 (11)
N2	0.0248 (14)	0.0239 (14)	0.0325 (14)	-0.0004 (11)	0.0007 (12)	-0.0030 (11)
N3	0.0248 (14)	0.0188 (13)	0.0299 (13)	0.0006 (11)	-0.0014 (11)	-0.0048 (10)
N4	0.0298 (15)	0.0211 (13)	0.0250 (13)	0.0005 (11)	-0.0005 (11)	-0.0041 (10)
C1	0.055 (3)	0.031 (2)	0.056 (2)	-0.0015 (18)	0.020 (2)	-0.0044 (17)
C2	0.076 (3)	0.042 (2)	0.040 (2)	0.006 (2)	0.018 (2)	-0.0017 (17)
C3	0.068 (3)	0.036 (2)	0.049 (2)	0.010 (2)	0.003 (2)	-0.0068 (18)
C4	0.055 (3)	0.036 (2)	0.054 (2)	-0.0043 (19)	0.005 (2)	-0.0063 (18)
C5	0.051 (2)	0.035 (2)	0.045 (2)	-0.0052 (18)	0.0121 (18)	-0.0039 (16)
C6	0.045 (2)	0.0234 (17)	0.046 (2)	0.0024 (16)	0.0117 (17)	-0.0082 (15)
C7	0.037 (2)	0.0250 (17)	0.051 (2)	-0.0038 (16)	0.0169 (18)	-0.0121 (15)
C8	0.040 (2)	0.0231 (17)	0.047 (2)	-0.0015 (15)	0.0122 (17)	-0.0096 (15)
C9	0.0267 (18)	0.0220 (16)	0.049 (2)	0.0031 (14)	0.0053 (15)	-0.0078 (15)
C10	0.033 (2)	0.0226 (17)	0.0435 (19)	0.0022 (14)	-0.0023 (16)	-0.0047 (14)
C11	0.034 (2)	0.0339 (19)	0.049 (2)	0.0033 (16)	0.0017 (17)	0.0010 (16)
C12	0.046 (2)	0.050 (2)	0.046 (2)	-0.0097 (19)	0.0047 (19)	-0.0053 (18)
C13	0.078 (3)	0.034 (2)	0.041 (2)	-0.013 (2)	0.004 (2)	0.0018 (17)
C14	0.093 (4)	0.039 (2)	0.055 (3)	0.020 (2)	-0.009 (3)	0.006 (2)
C15	0.051 (2)	0.036 (2)	0.053 (2)	0.0170 (18)	0.0025 (19)	0.0011 (18)
C16	0.0260 (18)	0.0243 (17)	0.0353 (17)	-0.0018 (13)	0.0061 (14)	-0.0017 (13)
C17	0.0236 (17)	0.0225 (16)	0.0273 (15)	-0.0033 (13)	0.0035 (13)	-0.0025 (13)
C18	0.0235 (17)	0.0258 (16)	0.0185 (14)	0.0023 (13)	0.0053 (12)	-0.0026 (12)

C19	0.0283 (18)	0.0259 (17)	0.0273 (16)	-0.0038 (14)	0.0009 (14)	-0.0061 (13)
C20	0.039 (2)	0.0224 (16)	0.0308 (17)	0.0015 (14)	-0.0001 (15)	-0.0023 (13)
C21	0.0325 (19)	0.0339 (18)	0.0269 (16)	0.0067 (15)	-0.0014 (14)	-0.0015 (14)
C22	0.0259 (17)	0.0385 (19)	0.0250 (16)	-0.0036 (15)	-0.0011 (14)	0.0014 (14)
C23	0.0311 (18)	0.0244 (16)	0.0230 (15)	-0.0018 (14)	0.0053 (13)	-0.0032 (13)
C24	0.0258 (18)	0.0262 (16)	0.0257 (15)	0.0004 (14)	0.0024 (13)	0.0006 (13)
C25	0.0260 (18)	0.0240 (16)	0.0252 (15)	0.0018 (13)	0.0011 (13)	0.0003 (13)
C26	0.0279 (18)	0.0312 (18)	0.0263 (16)	-0.0005 (14)	0.0031 (14)	-0.0023 (13)
C27	0.0251 (18)	0.0285 (17)	0.0335 (17)	-0.0034 (14)	0.0025 (14)	-0.0036 (14)
C28	0.0311 (19)	0.0233 (16)	0.0238 (15)	0.0003 (14)	-0.0026 (14)	-0.0038 (12)
C29	0.0296 (18)	0.0298 (17)	0.0252 (16)	0.0041 (14)	0.0033 (14)	-0.0006 (13)
C30	0.0230 (17)	0.0270 (17)	0.0272 (15)	0.0002 (13)	0.0050 (13)	0.0010 (13)
C31	0.042 (2)	0.038 (2)	0.0325 (17)	0.0055 (16)	-0.0014 (16)	-0.0146 (15)

Geometric parameters (Å, °)

S1—C16	1.662 (3)	C12—C13	1.376 (6)
O1—C7	1.218 (4)	C12—H12	0.9500
O2—C28	1.370 (4)	C13—C14	1.384 (6)
O2—C31	1.429 (4)	С13—Н13	0.9500
N1—C16	1.355 (4)	C14—C15	1.378 (6)
N1—N2	1.374 (4)	C14—H14	0.9500
N1—C9	1.477 (4)	C15—H15	0.9500
N2—C17	1.310 (4)	C17—C18	1.463 (4)
N3—C17	1.378 (4)	C18—C19	1.401 (4)
N3—C16	1.393 (4)	C18—C23	1.406 (4)
N3—N4	1.418 (3)	C19—C20	1.382 (4)
N4—C24	1.291 (4)	С19—Н19	0.9500
C1—C2	1.371 (6)	C20—C21	1.390 (5)
C1—C6	1.415 (5)	С20—Н20	0.9500
C1—H1	0.9500	C21—C22	1.392 (5)
C2—C3	1.386 (6)	C21—H21	0.9500
С2—Н2	0.9500	C22—C23	1.381 (4)
C3—C4	1.381 (5)	С22—Н22	0.9500
С3—Н3	0.9500	С23—Н23	0.9500
C4—C5	1.394 (5)	C24—C25	1.461 (4)
C4—H4	0.9500	C24—H24	0.9500
C5—C6	1.389 (5)	C25—C30	1.399 (4)
С5—Н5	0.9500	C25—C26	1.402 (4)
C6—C7	1.498 (5)	C26—C27	1.383 (4)
C7—C8	1.526 (5)	С26—Н26	0.9500
C8—C9	1.531 (5)	C27—C28	1.402 (4)
C8—H8A	0.9900	С27—Н27	0.9500
C8—H8B	0.9900	C28—C29	1.395 (4)
C9—C10	1.517 (5)	C29—C30	1.382 (4)
С9—Н9	1.0000	С29—Н29	0.9500
C10-C15	1.383 (5)	С30—Н30	0.9500
C10-C11	1.394 (5)	C31—H31A	0.9800
C11—C12	1.391 (5)	C31—H31B	0.9800

C11—H11	0.9500	С31—Н31С	0.9800
C28—O2—C31	118.2 (3)	C13—C14—H14	119.7
C16—N1—N2	114.1 (2)	C14—C15—C10	120.8 (4)
C16—N1—C9	124.8 (3)	C14—C15—H15	119.6
N2—N1—C9	120.7 (2)	C10-C15-H15	119.6
C17—N2—N1	104.7 (2)	N1-C16-N3	101.8 (3)
C17—N3—C16	109.3 (2)	N1-C16-S1	128.7 (2)
C17—N3—N4	123.9 (2)	N3—C16—S1	129.5 (2)
C16—N3—N4	125.4 (2)	N2-C17-N3	110.0 (3)
C24—N4—N3	112.8 (2)	N2-C17-C18	122.7 (3)
C2—C1—C6	120.9 (4)	N3—C17—C18	127.3 (3)
C2—C1—H1	119.6	C19—C18—C23	119.2 (3)
C6—C1—H1	119.6	C19—C18—C17	123.6 (3)
C1—C2—C3	120.5 (4)	C23—C18—C17	117.1 (3)
C1—C2—H2	119.8	C20—C19—C18	119.9 (3)
С3—С2—Н2	119.8	С20—С19—Н19	120.0
C4—C3—C2	119.8 (4)	С18—С19—Н19	120.0
С4—С3—Н3	120.1	C19—C20—C21	120.8 (3)
С2—С3—Н3	120.1	С19—С20—Н20	119.6
C3—C4—C5	120.0 (4)	С21—С20—Н20	119.6
С3—С4—Н4	120.0	C20—C21—C22	119.5 (3)
С5—С4—Н4	120.0	C20—C21—H21	120.2
C6—C5—C4	121.0 (4)	C22—C21—H21	120.2
С6—С5—Н5	119.5	C23—C22—C21	120.4 (3)
С4—С5—Н5	119.5	С23—С22—Н22	119.8
C5—C6—C1	117.8 (4)	C21—C22—H22	119.8
C5—C6—C7	123.2 (3)	C22—C23—C18	120.1 (3)
C1—C6—C7	119.0 (3)	С22—С23—Н23	120.0
O1—C7—C6	121.1 (3)	С18—С23—Н23	120.0
O1—C7—C8	120.7 (3)	N4—C24—C25	121.2 (3)
C6—C7—C8	118.2 (3)	N4—C24—H24	119.4
C7—C8—C9	114.3 (3)	C25—C24—H24	119.4
С7—С8—Н8А	108.7	C30—C25—C26	118.6 (3)
С9—С8—Н8А	108.7	C30—C25—C24	123.0 (3)
С7—С8—Н8В	108.7	C26—C25—C24	118.4 (3)
С9—С8—Н8В	108.7	C27—C26—C25	120.6 (3)
H8A—C8—H8B	107.6	C27—C26—H26	119.7
N1—C9—C10	111.2 (3)	C25—C26—H26	119.7
N1—C9—C8	109.3 (3)	C26—C27—C28	119.7 (3)
C10-C9-C8	110.5 (3)	C26—C27—H27	120.2
N1—C9—H9	108.6	C28—C27—H27	120.2
С10—С9—Н9	108.6	02-C28-C29	124.7 (3)
С8—С9—Н9	108.6	O2—C28—C27	114.8 (3)
C15-C10-C11	118.8 (3)	C29—C28—C27	120.6 (3)
C15—C10—C9	119.4 (3)	C30—C29—C28	118.9 (3)
C11—C10—C9	121.8 (3)	С30—С29—Н29	120.6
C12—C11—C10	120.0 (3)	C28—C29—H29	120.6
C12—C11—H11	120.0	C29—C30—C25	121.7 (3)
C10—C11—H11	120.0	C29—C30—H30	119.2

C13—C12—C11	120.8 (4)	С25—С30—Н30	119.2
C13—C12—H12	119.6	O2—C31—H31A	109.5
C11—C12—H12	119.6	O2—C31—H31B	109.5
C12—C13—C14	119.0 (4)	H31A—C31—H31B	109.5
C12—C13—H13	120.5	O2—C31—H31C	109.5
C14—C13—H13	120.5	H31A—C31—H31C	109.5
C15—C14—C13	120.7 (4)	H31B—C31—H31C	109.5
C15—C14—H14	119.7		
C16—N1—N2—C17	0.1 (3)	C9—N1—C16—S1	-3.3 (5)
C9—N1—N2—C17	-172.9 (3)	C17—N3—C16—N1	-3.1 (3)
C17—N3—N4—C24	142.3 (3)	N4—N3—C16—N1	-169.9 (3)
C16—N3—N4—C24	-52.7 (4)	C17—N3—C16—S1	174.8 (2)
C6—C1—C2—C3	0.5 (6)	N4—N3—C16—S1	7.9 (5)
C1—C2—C3—C4	0.0 (6)	N1—N2—C17—N3	-2.2 (3)
C2—C3—C4—C5	-0.7 (6)	N1—N2—C17—C18	179.3 (3)
C3—C4—C5—C6	0.9 (6)	C16—N3—C17—N2	3.4 (3)
C4—C5—C6—C1	-0.4 (5)	N4—N3—C17—N2	170.6 (3)
C4—C5—C6—C7	-179.4 (3)	C16—N3—C17—C18	-178.1 (3)
C2—C1—C6—C5	-0.3 (5)	N4—N3—C17—C18	-11.0 (4)
C2—C1—C6—C7	178.8 (3)	N2-C17-C18-C19	153.5 (3)
C5—C6—C7—O1	179.6 (3)	N3-C17-C18-C19	-24.8 (5)
C1—C6—C7—O1	0.6 (5)	N2-C17-C18-C23	-24.6 (4)
C5—C6—C7—C8	-1.2 (5)	N3—C17—C18—C23	157.1 (3)
C1—C6—C7—C8	179.8 (3)	C23—C18—C19—C20	-0.9 (4)
O1—C7—C8—C9	-18.3 (5)	C17—C18—C19—C20	-179.0 (3)
C6—C7—C8—C9	162.5 (3)	C18—C19—C20—C21	0.0 (5)
C16—N1—C9—C10	-71.5 (4)	C19—C20—C21—C22	0.9 (5)
N2—N1—C9—C10	100.8 (3)	C20-C21-C22-C23	-0.9 (5)
C16—N1—C9—C8	166.2 (3)	C21—C22—C23—C18	0.0 (4)
N2—N1—C9—C8	-21.5 (4)	C19—C18—C23—C22	0.9 (4)
C7—C8—C9—N1	-62.6 (4)	C17—C18—C23—C22	179.1 (3)
C7—C8—C9—C10	174.7 (3)	N3—N4—C24—C25	174.5 (3)
N1-C9-C10-C15	141.4 (3)	N4-C24-C25-C30	-14.1 (5)
C8—C9—C10—C15	-97.0 (4)	N4—C24—C25—C26	166.2 (3)
N1—C9—C10—C11	-41.5 (4)	C30—C25—C26—C27	2.1 (5)
C8—C9—C10—C11	80.0 (4)	C24—C25—C26—C27	-178.1 (3)
C15-C10-C11-C12	0.0 (5)	C25—C26—C27—C28	-0.6 (5)
C9—C10—C11—C12	-177.1 (3)	C31—O2—C28—C29	-7.6 (4)
C10-C11-C12-C13	1.6 (6)	C31—O2—C28—C27	172.3 (3)
C11—C12—C13—C14	-1.3 (6)	C26—C27—C28—O2	178.8 (3)
C12-C13-C14-C15	-0.6 (6)	C26—C27—C28—C29	-1.3 (5)
C13-C14-C15-C10	2.1 (6)	O2-C28-C29-C30	-178.6 (3)
C11—C10—C15—C14	-1.8 (6)	C27—C28—C29—C30	1.6 (5)
C9-C10-C15-C14	175.3 (4)	C28—C29—C30—C25	0.1 (5)
N2—N1—C16—N3	1.8 (3)	C26—C25—C30—C29	-1.9 (5)
C9—N1—C16—N3	174.5 (3)	C24—C25—C30—C29	178.4 (3)
N2—N1—C16—S1	-176.0 (2)		

